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FINAL REPORT

iiesearch conducted under this contract Included two distinct

projects. The first was concerned with using simple truss models to

illustrate certain critical aspects of nonlinear material behavior Results

obtained were Issued In two reports listed as Items I and In the

bibliography on page 2. This project was carried out by the Principal

Investigator, Philip G. Hodge, Jr.

The other project was concerned with using a constant-strain finite

element method to find complete solutions for the stress and

displacement in a plate with a centered crack .This research was carried

out by James Malone, Research Assistant,* under th' joint direction of the

Principal Investigator and of Professor Robert Plunkett.AlThe elastic

solution was obtained first*,t was presented in the report listed as item

* 3 in the bibliography. 1he elastic/plastic solution was completed after the

expiration of this contract. A description of this phase constitutes the

main body of this Final Report; it is planned to submit the material for

publication.

Now Dr. James Malone, Research Engineer, General
Motors Laboratory, Warren, Michigan.
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A.

AN ELASTIC -PLASTIC FINITE ELEMENT

SOLUTION FOR A CRACKED PLATE

by
Philip G. Hodge, Jr., James G. ralone, Robert Plunkett

ABSTRACT

In this paper, the finite element method is applied to a center-cracked plate
subject to opening mode tensile loading. A complete elastic-plastic plane-stress
solution for strain hardening materials obeying a von Ilises yield condition and
Prandtl-Reuss stress-strain relations is obtained using only constant strain elements.
An accurate representation of the stress-strain field, even at distances veru close to
the crack tip, is achieved by the use of a mesh arrangement in which the size of the
elements decreases In a geometric series as the crack tip Is approached. The
numerical solution is compared with and used to discuss the range of validity of the
well known HRR (Hutchinson-Rice-Rosengren) crack tip solUton valid for small scale
ielding. The influence of different amounts of hardening and the effect of changes in
Ihe mesh arrangements are also considered. Features orthe finite element algorithm

which reduce tte total computing time are discussed. The finite element program is
executed on the Cray-I computer and the effect or vectorization on computational
speed is discussed for this problem.

1. INTRODUCTION.

In a recent paper [11 we have shown, for the particular problem of a
center-cracked elastic plate under tensile loading, that a finite element formulation
which uses oni constant-strain elements can provide an accurate representation of
the stress-strafn field even In the neighborhood of the stress and strain singularitles
at the crack-tip. This was achieved Dy using a large ruimber of triangula elements
arranged In a mesh In which the size or the e ements decreases in a geometric series
as the crack tip is approached. The present paper extends this technique to handle
nonlinear material iihavior and discusses te resulting complete elastic-plastic
solution for crack problems.

Miethods commonly used in nonlinear finite element analysis are discussed by
Bathe 12 and Zierklewlcz [3); practical procedures for varlots applications have been
presented by Bathe and Cimento [41 and also by Bergan et al 15]. In an elastic-plastic
Unite element analysis, the most effective wag of dealing with the material
nonlinearity is by an incremental approach in which he load is apied in a number of
small Increments. Within each increment. the true stress-strain relations are
approximated and an Iterative process is applied to ensure that the equilibrium

equations are satisfied to within some specified level of accuracy. At each iterative
step tVe solution of a banded system of linear algebraic equations Is required which
accounts for a large portion of the computational cost. For a given f Inite element
mesh, the aocuracy of the solution can ie improved by reducing the size of the load
Iraements and/or Imposing a tighter convergoence criterion. However, this may cause
a substantial increase in tlie total computing time so that in practice a balance has to

.4. be struck between accuracy and computational cost.
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Access to a CRAY-I supercomputer has made it feasible for us to consider a
- - technique for nonlinear finite element analysis which uses a large number of unknowns

and ma small load Increments. This is possible because the computational speed and
memory capacity of this machine are much reater than revous. generations of
computers. For example, rates of 69 MFLOPS million floating point operations per
socond) hav been recorded [6.71 on the CRAY-I Sfor the solution of dense sstems of
linear equations of order 300 usirgLLU decomposition with pivoting ( without resorting
to the use or assembly langu ).This is about 28 times faster tan the 1&113033 and
800 tImes faster then thd V ; I In8o. Rates in excess o 140 MFLOPS have been
achieved by the use of assembly language [81.

In this paper, we consider the particular problem of a center-cracked plate subject
to mode-I (tensile opening mode) loading. Small strains and displacements are
assumed. This means that material nonlinearities but not geometric nonlinearities are
considered. This problem has been the subject of considerable interest. In the
following we will mention only some of the many analitic and numerical paws which
have aieared In the literature. A more detail accbunt is contained In the review
article by Rice [91.

The asymptotic form of the plastic crack tip stress-strain field in plane strain and
plane stress has been established analytically by Rice [101. Rice and R.s. en [1 I].
and Hutchinson [12, 131 for strain hatdening and perfectly plastic materials. This
solution, frequently referred to as the HRR solution, is based on the deformation theory
of plasticity and is valid under conditions of small scale yielding [141. It will bI
discussed In more detail later in this paper.

For power law hardening materials, Tracey [151 used the finite element method to
determine the plane-strain stress state at the tip of a crack under conditions of small
scale yielding. He used special singu laritU elements at the crack tip in which the
displacement shape functions were chosen to represent the form of the HAR solution;
elsewhere 4-nodeid isoparametric elements were used. Hilton and Hutchinson [161,
carried out a plane-stress finite element analysis for both small and large scale
plastic yielding. Their method used constant strain triangular elements together with
a special singular element surrounding the crack tip in which the HRR solution was
embedded.

We have recently shown [1], for an elastic analysis, that constant strain elements
-.can. be use to obtain an ac rate representation of the stress-strain field in the

region near the crack tip. For the elatic-plastic analysis, our. approach has also been
to use a large number of comstant strain triangular elements and a mesh which is
similar to tat Iused in the elastic finite element analysis 111. Our nonlinear finite
element procedure yields a complete elastic-plastic solution at a reasonable
computational cost wh executed on the CRAY-1. We demonstrate that on a scale in
which the crack length eqals one it is possible to obtain a sufficiently accurate
solution for the stress field at distances as close as 10 -0 from the crack tip. This
solution is used to discuss both the spatial range over which the HRR solution holds
and the level of applied load at which the HRR solution no ionger accurately represents
the crack tip stress-strain field. Our solution provides a good representation of the
stress-strain field at all levels of applied load.

In section 2, we describe the element mesh and the algorithm which Implements
our elastic-plastic finite element analysis. The numericat results are discussed in
Section 3. The effect of different element meshes on the computed solution and the
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Influence of hardening are also reported in that sectIon. In Sect ion 4. computing times

for different meshes and for different amounts of hardening are discussed. Features
of the algorithm including vectorization which reduce the computational cost are also
described. Finally. some conclusions are presented in Section 5.

2. METHOD OF SOLUTION.

In this paper the particular problem of a reC taMlar plate containing a centrallu
located ct to mode-iopening mode) Ioding is considered. The crack
length is 2a anda the pate is of height 2h and width 4a (see Fig. 1). The boundary
conlitions along the top and bottom edges are uniform displacements In the vertical
direction and zero traction components in the horizontal direction. Zero tractions are
prescribed on the remaining edges of the plate and along the crack faces SG. By the
usual summetru argument, the problem can be reduced to that of solving for one
quadranf ABEF Csha-ed area) of the plate with boundary conditions as shown in Fig. 1.

-,= (a) Finite element mesh.

usesThe finite element program is based on the well known displacement method and
Uses only co tant strain elements. The rectangular domain ABEF.(Fig. 1) is

iscr..etize into tri .ular elements by a mesh generating program which has been
developed so that different mesh arrangements can be automatically produced. A
typical mesh arrangement using 216 eFements is shown in Fig. 2. Meshes rangin in
size from 564 to 2064 elements and having elements as small as 10 - a at the
crack tip have been used in this study.

The mesh over portion ABCO of the plate is formed from the quadrilaterals defined
by a set of rectangular rings intersected by rays. Let M numbers rt be defined by

rn:a, r==oM-1 , I-1,M-2,....2.1 (2. 1)

where = is a constant. The rings are a set of nested r x 2r rectangles with lower
corners along .AGB (see Fig. 2) at distances ±t r, from ihe crack tip G. Let N-I
erioista points be inserted along BC and the same spacing contirnie along CD and
D1 DA. The rags are straight lines from 6 through these points. The innermost ring isdivided Into 4N equal scosceles triangles ad the quadrilaterals in the remaining
rings are each spli into two triangles b! their i sagnals as shown In Fig. 2. Finally

athe mesh 1 t by filli ng the remainino portion DCEF with approximatelu square
rectangles of constant size which are split into triangles. The mesh shown in tg. 2 is
for M=5 and W-3.

The aspect ratio F of a generic triangle JKL in ring i+l along GB is given by

F = IJKI/IJLI = (r,, - r,)/(rN) = N [1/ac-I (2.2)
Hence the geometric coefficient oc in Eq (2.2) is related to a typical aspect ratio by

o: = (I F/N)- 1  (2.3)

We have found that good results are obtained by taking F:1.

A similar mesh has been used [11 in an elastic study of an Infinite plate containipg
a centrally located crack. The main features of this mesh arrangement are more fully
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discussed In Ref. [ I].

(b) Material properties.

The plate material Is assumed to be ho nea.s and initially isotropic, obeging
Hooke's law In the elastic range with initial yielding determined bD the Von Mlses
yield conditior After Vielding, plastic strain increments are defined an associated
low rule with linear Iardening. Isotropic growth of the uleld condit oan Is assumed.

At any point where unloading occurs the incremental form of Hooke's law will again
appi. These assumptions lead to the well known Prandtl-Reuss stress-strain
rel aions in the incremental theory of plasticity. The solution presented in this paper
is for a state of plane-stress. It is a so assumed that both strains and rotations are
small. The validity of these assumptions will be discussed in Section 3.

The elastic-plastic stress-strain matrix D(o) which relates changes in stress to
chan in strain at points of the material which have ielded and are loading has been
derived under the above assumptions by Yamada et al [I71. During anuj time increment
At the stress increments AO and strain increments At are related

A0 = D(ol) &e (2. 4)

where A = [AO Y At IT A [AE E AV ,T and V is the
engineering shear comporent of Wrain. If the m'teriaPis elast%, Do) is t~constant
matrix

D() : ,E/(I-_2) U 1 0 (2.5)0 0 (1 ,-u)/2j

whether or not earlier plastic behavior has taken place. If it is plastic,
or 0, + 2P

D(d)= De, m (E/Q) / - * o 12up

.- [ u(2. 6)
--0 ,,'O.+2oP -Ir ( ,, 1

'1ii2 ( +v -" ( +U )/(l O J
: where a"Is the deviatoric stress and U' is the equivalent stress.

.. 3: [(3/2) (Wi &'i& ) 1/2

P (2H/E) U2T'2 /(I V)

,.-.....~~~~~~~~~~~.....-.... ........... ..... .. .: ,........,...;.-....-....,.:' , '
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Q a R 2(1-0 2)P (2.7)

R 2 m +20O s a y'2

H EET /(E- ET)

where a is the Poisson's ratio, E is Young's Modulus, and ET Is the plastic modulus.
A plot of equivalent stress U versus equivalent strain r' for a material

satisfqing our constitutive assumptions is shown in Fig. 3. The equivalent strain !-is

- = [(3/2XE'ij eij) 2  (2.8)
where E'i are the deviatoric components of strain. in practice a piecewise linear
stress-strain law can be determined from data obtained I a simple tension test for a
real material. We have chosen the most simple case, i.e. a bilinear stress-strain law,
but the above discission can be modified in an obvious manner to handle any piecewise
linear curve.

(c) Nonlinear finite element analysis.

Since the strain is constant in each element, the column matrix of element strains
e and the column matrix of nodal displacements u are related by

e=B u (2.9)

. where the constant matrix B depends only on geometry and not on material behavior.

The nodal force matrix F and the stress matrix o are related by the similar
relation

.F :A c (2. 10)

where A also depends onl on eometry. Equations (2. 9) and (2. 10) must be valid for
either total or Incremental behavior.

During ay incremental time step At. the stress and strain increments are related

JCY.fe+AE (o) De =(cf) AE (2. 11)
where o* Is some mean value of the stress state durin the strain interval Ae.

.. Combining Eqs, (2. 4), (2. 9), and (2. 10) we obtain Rhe usual matrix equation

K(O)Au = AF (2. 12)iwhere the "stiffness' matrix K is given by

K (a) = A D(O) 8 (2. 13)

Due to the incremental nature of the stress-strain relations (see Eq. (2. 11)), this
problem is best solved by an Incremental procedure in which the load is applied in a
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series or Increments AF",. Thus the load at the end of Increment M is
IM =Fm- +*AFn Ml19l2,..q (2. 14)

where FO . F. are the initial and final loads respectively.

The problem can be psel s follows: Given a complete slution u e
fl,~heco~et I) stepg to ofthe~ sptep correspondi

the external load F.By I~ 4ite 'aolution . we mean column matrices for noal

duilcngt.' tQodal focs element strains, and element stresses. The processduring the M M step is to obtain incremental changes Au A d idisplacements, strains, and stresses. respectively. correkspondin~to hmrken inload AF, which satisfy Eqs. (2. 9) to (2. 11), i.e.

Ae mBAU m (2. 15)
Aam ~am e m(2. 16)

Fm zAc (2. 17)

where 0 a + Aa agdo a is some mean value of the stress state during the
strain inervaiA , ("a;,~ will be defined later).

The first step is fully elastic and the solution is obtained by direct solution of the
elastic finite element equations. For each later step an iterative method is used to
solve the kinematic, constit tive, and equilibrium equations (2. 15, -16, -17) at step
M. The first estimate Au m "Is given by

where At;,.. is tItff change in jpplacement which occurred during the previous (M- 1)
~step. NetAE ,.and Aoa" are obta" in order from Eqs. (2. 15) and (2. l*usi r, a thei initial (meanstress cr, ; the first total stress estimate crt

iso iWby add Ing Aam t the initial value 0l,-..~

In general a (1) will not satisfy equilibrium. We begin the iterative process by
defining a residu 1 force:

Pm(l) = Fm, -Aorm~1  (2. 19)

* and obtain a correction to the displacement increment f ield by solving

Km Sum(i): =pM(l (2. 20)

where

Km 2A D(Ym-) 8(2.21)

KM is factored (CholeskV algorithm) in the first iteration. This factored form is
Merter retained for the current step so that only a back suistltlon need be
performed Ive (2. 20) for each sJWeedIinIteration. Then Au is obtained bMj

q adding SC to A l)adA " s obtainied from (2. 15). A'lean stress am,
adding Su. m to Aum ad e
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(2) Is deflinedb

":" (2) :(=1 '. + o,())/2 (2.22)
and AO.0 is then given by (2. 16).

This iterative process is repeated until the residual forces Pmu) at the ith
iteration satisfy

P,11 )I < TOL (2.23)
wjjre is the magnitude of the largest component (in absolute value) of
-PM, oJer all te nodes and TOL Is somep.jreset convergence tolerance.

The iterative procedure at the Mu step can be summarized in the following
•"algorithm:

Au MO+ 1): Au MO) + Lu M(i)

At M(+1) : B AU MO1+ 1)

a 0+ 1) r(I1I) ( a 0+0 1Am)2 (2. 24)
-01o (I) * . IX o," (141)) & 11(14)

p1 (t+ 1) = Fm - A O(r11 11

KM Su M + 1) p 0( 11

where Su (0 - 0, Au(O) = Au .,, () o and i= 0,1,2,3..... It can be
seen that tAis approach iN'a modif d form of the N
non-linear system of equations (see Refs. [2, 3)).

(d) Load step size.

One of the advantages of using constant strain elements is that at an given
applied load the stress throughout ech element will be constant. Further for the
protem consldered here, no unloading of Ulelded elements occurs. Therefore, at arg
given load each element is either elastic and has never yielded or is plastic an
roading. Our numerical procedure is to terminate a load step when anij elastic element
reaches yield. When this procedure is used each element will remain either elastic or
plastic throughout the entire load step.

Since arvj single iteration Is a strictly linear process, the load F. at which the
Mth step is termiated can be easily estimated in the following way. At the
begiming of the M U I lo step 9e app i 'e arbitrary load increment AF1 and
proceed to compute Au A ,d in the marvnr described above. Then
for each elastic element " A e ccnpuie a alar factor p which satisfies

U 2 (O i. 0 + 2FM )o 1 8 )) 0) y 2  (2.25)

where Y is the initial yield stress. Based on the stress change A011O) we
predict thA the element o for which

,:,: :.:.:- .:::.: -::-,... . ...... :....,....... ._........ .,....... . ....... -. ,,,',:
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",.(') z min$( In;1)) (2.20)

will be the element most likely to first reach yield dunrh  the frrent load step. The
entire Incremental solution can now be scaled QO the fact 2rr l e

A0TMO )  -(i)n WAO() (2.27)

so that element oc will have just reached yield when the load is Incremented by an
amount

A = 16 ) AF (2.28)
At each Iteration, improved estimates of the load Increment AF requiredelement oc just reach Vield can be obtained by compling scalin factors 2( felement cc correspondig to the stress change Ad"- using Eq. 2. 25).

It was found that computin scal ing factors for only the first three iterations in
each load step was the most eflicient procedure. The load increment AiF Is then held
fixed for the remaining Iterations of the load step. At the end of the load s'4ep, the yield
condition may not be satisfied exactly by element a but this Is taken care or bij the
use of a smeared yield condition.

The idea of a smeared yield condition is based on a technique used by Yamada et al
[171 and, in a different context, by Hodge and Van Rij [18. 19 to substatially reduce
the total number of load steps. At the end of each load step, arj elastic element
for which the equivalent stress U satisfies

0.99 YO < U' <1.02 Yj (2. 29)

has its yield stress Y, redefined so that Y, = 3 .

This means that elements which have not yet reached yield but which are close
enough to satisfy (2. 29) can be treated as plastic in the next step. This avoids the
need for one or more additional steps to bring these elements to yield. It also means
that the solution at the end of the step can be accepted even if some elements exceed
the yield stress, provided (2. 29) is satisf led. The alternative would be to repeat the
load step using an improved estimate for the Initial size of the load increment.

The main features of the program have been described above. A more detailed
description of the program algorithm may be found in Ref (201 which contains the
program documentation and Fortran co e.

3. RESULTS AND DISCUSSION.
In this section an assessment of the accuracu of the solution particularly in the

region close to the crack tip will be given. The effect of different mesh arrangements
on the solution will also be discussed. Comparisons will be made Detween
elastic-plastic solutions .correspoling to different amounts of h. dening and also
with the purely elastic solution. The numerical elastic-plastic solution in the region
surrounding thi crack tip will be compared with an analytic solution which is valid
under conditions of small scale yielding In which the plastic zone is small compared to
the plate dimensions.

p.
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(a) Finite element solution.

The plate material has Young's Modulus E - 185.1 0 Pa, Potsson's ratio v = 0.3,
Initial yield stress Y =_225.4 M P, and obeys a billnear stress-strain law with plastic
MvodulusE T =2.372 6 Pa. The plate dimensions are h=250 mm and a=75 mm (see Fig.I). Ths particular goometru and material properties were selected so that thenumerical solution could also 5e compared with the experimental results of Yagawa at
al. [21.

They reported the increase of a gage length in a centrall U cracked thin (5 mm thick)
aluminum plate as a function ofol..The game points straddling the crack were
located at distances of 80 mm directly above W below the center of the plate. Ourfinite element solution was obtained using mesh A (see Table 1) and acres closely
with the experiment as shown in Figure 4. A dimensionless load f has been defined N
dividing bUThe initial yield load of the uncracked plate: f- F/A Y where A is the areaof the top edge of the Pilate. Henceforth, *apidld re~ers to f. _agawa ta

Spoint displacement of mm at an applied load of 0.87 at whichload the cratc began to grow, whereas for the same displacement our numerical* solution predicts an applied load of 0.93, which is 7% greater than the measured value.
The plastic zones at different leves of lied load are shown in Figs. 5 and 6. It can
be seen that the overall shape of the pItic zone is somewhat influenced by the level
of applied load. Our numerical results show that the plastic zone has a radius of
about O.la in the region ahead of the crack tip at an applied load of 0.3. The plasticzone first reaches tho uter edge EF of the plate (see Fig. 1) when the applied load is0.51 ; at this load the knee occurs in the load versus ant curve
(Fig. 4). At a load of 0.6 the plastic zone covers about 15 or the area of the quadrant
ABEF and extends to cover 60% of this area at a load of 0.9.

The equivalent stress U computed at an applied load of 0.3 along 5 rays radiating
from the crack tip is plotted versus oIog ( n Fig. 7 where r and 0 are polar
coordinates referred to the crack tip. Te radial distance r is measured from thecrack tip to the centroid of the element in which U is computed. . Each curve
displays a fairly abrupt kir* Indicated for example N the arrow in Fig. 7 for the ray0 :168 .. ARong each ray the kink ocurs at the elastic-plastic boundary. Thestresses drop off sharply over a short distance beyond the elastic-plastic bDoUndary.
Similar behavior is observed at other levels of applied load.

As the applied load Increases above 0.5 and the plastic zone extends across the
plate, It is tound that the equivalent stresses in the region close to the crack tip(r/a<10- ) are greater than but approximately proportionali to the equivalent stresses
obtained from the prelu elastic solution. The factors of proportionality are about 2.6and 1.4 at applie Ioa of 0.6 and 0.9, respectively This means that, at applied
loads greater than 0.5 the stress field displays a lI/r singularity at the crack tip.
The detailed behavior of the stress field al applied loads below f= 0.5 will be
discussed later in subsection (d).

Figure 8 shows the C components of strain on a log-log scale. The strains alongthe 49u ra show, a I/./f variation at the crack tip over the range r/a< 2.0 x 10
Along this rag, the elastic-plastlc boundary is located at r/a : 0.15. Over the ranger/a > C.15 the e, strain components are greater than those which would be obtained

from a. purely elastic solution. For example, the p centage difference between the
strains from the elastic-plastic and elastic solutions decreases from 10% just

• ," ,%.,. ' ,,', '. '. .',. ..',. ,,','.,. .,',, ..','-'..',/ ..'... -, .'... -''.' . ,.. ... ....... ... .- ."..... . . ..-.. .-.- -.. . . ...- .-. .. ,-.
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outside the elastic-plastic boundary to less than 3% near the edge of the plate (for r/a
> 0.9). As the lplied load Is increased the distance from the crack tip over which
displas a I/v/r variation increases in extent up to a maximum distance of about

r/a .02 along the 49 v r.a at an applied load or 0.9. The behaviour of the strain
along other raus Is qua litativelu similar; the largest ey, strain components Occur
ai- the raifr which 9=81'

We have also considered a material with a higher amount of hardening ( E -
18.51 6 Pa ). The behavior of the stress-strain field for this materiar is

alitativelg similar to that obtained for the lower hardening material (E T = 2.372 G
a) which has been discussed above.

(b) Effect of different mesh arrangements.

The presence of a singularity in the stress-strain field at the crack tip requires
that the arrangement of 1lements in the mesh must be carefully selected if an
accurate solution is to be achieved at a reasonable computational cost. The elastic
finite element solution for a crack problem, using a mesh similar to that described in
Sec. 2 is discussed in Ref. [I11. it was found thatncreasi the number of rings In the

S-' mesh produced more accurate results in the region close to the crack tip, whereas an
increase in the number of rays gave more accuracy over the rest of the plate. It was
also shown that for a given mesh, increasing the rumber of rings while holding the
number of rays fixed ( thereby increasing the density of elements only at the crack tip
) produced less than 0. 1% improvement In the accurac of the solution over the range r
>lOOr where rl is the position of the irmermost ring in the original mesh. We now
show that similar observations hold for the elastic-plastic problem.

Four specific mesh arrangements have been considered (Table 1). Solutions for the
higl-hardenin material CE 18.51 . Pa )were obtained for each mesh over a range of
loads up to 0.. At this 1ad the plastic zone extended to touch almost all of the edge
EF (see Fig. 2). To facilitate a comparison with the results of Ref. [II], we w 1I
compare the vertical components of displacement v at nodes along the crack face
obtained from each mesh. Similar behavior is observed for v atong other radial
directions and also for the strain field.

Meshes A and B v - xmien to stuclkjthe effect of changing the number of rings
while keeling the umrnbW. of raus fixed. -The Solutions obtained from meshes A and Bshow nodiffermnceinvover t rane 10- < r/a < I at all levels of loading.
However, over the rane 10 T'< rTa < 10 -2 the vertical displacements v obtained
from mesh B are less than those obtained from mesh A. The difference between the
two solutions increases as the crack tip is approached. For example. at an applied
load of 0.3 the differences in v are apppr~lmatelu 0.5X 5.5%, and 16% at r/a equal
to 10 -3 , 10 , and 3.33x10 "  (the position of the node on the crack face adjacent
to the crack tip in mesh B), respectively.

The effect of increasing the density of the elements over the entire plate by
doubling the number of rays while holding the number of rings fixed, was studied bicomparrig meshes C and D. The vertical displacements v along the crack face obtaiQne
from the coarse mesh C are smaller than those obtained from the refined mesh D. For
example, at an applied load of 0.3 the fferences in v were approximately 1.4%, 2%,
3X, and 7X at r/a equal to 1, 10 " , 10 , and 4.6x10 , respectively.

An assessment of the accuracy of the finite element solution for the elastic
problem [1] was made possible by a comparison with an exact analytic solution. It
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was found that the elastic strain and displacement fields obtained by the use of meshA were in very good agreement with the analytic solution. For example, the error In
vertical dislacement v along the crack face was 2X, 4U, 6%. and 14X at r/a equal to
1. 0-z. 10"4. arnd 10-6. respectively.

In the absence of a complete analytic solution for the elastic-plastic problem, it
Is not possible to determine the accuracy of the finite element solution directl,, as
was done for the elastic problem. However, the observations which have been made on
the effect of different mesh arrangements for the elastic-plastic problem are
ualitativelU the same and in close quantitative agreement with those made in Ref. I]

for te elastic problem. Given this agreement, we can infer from the results of [I
that mesh A should also be expected to provide an element arrangement for Which an
accurate elastic-plastic solution can be obtained over the range r/a > 10 . This
assertion is borne out later in the paper when the numerical solution is compared with
the analytical HRR crack tip solution under conditions of small scale yielding.

For the elastic-plastic problem, it is found (see Section 5) that the computational
cos increases by a. factor of about 10 when the number of rays in the mesh is doubled
ie. changing N=3 to N=6). However, from the elastic results [11, it would be expected

that this change in the mesh would only slightly improve the accuracy of the solutior)
e.g. by approximately 1 2 3%., and 6% in v at r/a alto 1,10 - ,10-4, and 10

respectively. It was concluded that mesh A can be expected to provide the best
element arrangement in terms of balancing computational cost and accuracy over the
range r/a >10o for the elastic-plastic analysis.

(c) Small scale yielding and the HRR solution.

The analytic crack tip HRR solution [10,113 and 121 is based on a deformation theory
of plasticity and is valid under conditions of small scale yielding. The term small
scale yielding refers to the situation in which the applied lbad is sufficiently low so
that the size of the plastic zone is small compar ed to the length of the cratk; it is
small eroughthat the plastic zone Is embedded in an elastic field vened by the
dominant 1Ir tprm in the asymptotlc elastic series solution. In obtaining the HRR
solution, the IVr elastic term is the assumed boundar condi tion for large r.
However, the HAR analysis cannot predict how large the plastic zone may become so
that the' i/Ir elastic term is still a good approximation for the solution in the
region surrounding the plastic zone. Further, the HRR solution represents the

-: elastic-plastic solution only over a small region of the plastic zone located at the
crack tip. The extent o this region cannot be determined from the HRR analysis.

Our rumerical results provide a solution over the entire plastic zone and are based
on an incremental flow theory of plasticit. It has been shown [221 that a solution
obtained using deformation theor. will "be similar to that obtained using anIncremental flow t heory of plastici V provided the condition of proortional stressing
is sat isf ied. It has been pointed ou [j131 that proportional stressing can be expected
to hold under the assumption of small scale yielding for a material obeying a bilinear
stress-strain law.

For such a material Hutchinson [121 has shown that the radial and angular
variation of the stresses in the HRR solution has the same form as the dominant term
in the elastic solution. In the HRR solution the equivalent stress oNM at a point (r, e)
can be represented by

Krn- 1 2 cos 2 (e/2) (3/4) sin2 011/ (3. 1)

,-..,,, .-... ,-;..-.....-,/..-.;. .... / ............. -.......-.- , -.. -. .. ..-.....- . ..... ..-- -,'.-;...- .,/ ,'.? ,
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where r and 0 are polar coordiates referred to the crack tip. The amplitude K Is

given by

K = (ET/E)1n K, (3.2)
where K Is the elastic stress irtensity factor which replaces K in Eq. (3. 1) to yield
the elastic singular term.

Confidence In the accuracy of the numerical solution In the crack tip region can
be gained from a comparison with the HRR solution. On the other hand the accurate
numerical solution can be used to assess the range over which the HR solution is
valid at different levels of applied load and also to determine the behavior of the
solution over the remainder of the plastic zone in which the HRR solution does not
hold. In addition, the level of applied load up to which the HRR solution provides anaccurate description of the crack tip stress field can be estimated. These topics will
be the subject of the discussion that follows.

(d) Comparison with the HRR solution for small scale yielding.

T, heelastic stress Intensity factor K [used to compute , . see Eqs. (3. 1) and
(3 . 2)) has been determined from the elastic finite element"Alution bY the method
described in Refs. [I and 231. It has been shown [II that KI conputed Ij this method
will be accurate to within 3% of the correct value. For this prohlem, we have
computed K, / . a Y = 1.23 . We com are the HRR and finite element solutions for thelow hardening material by examinin he ratio X = U, U along the 490 ray where
U is the equivalent stress obtained from the nuMficai soluflon. The results are.-.-: shown in Fig. 9.

For the elastic finite element analysis we know, by considering the analtic
solution for o (gjven by the I/ /r elas ic term in the region near thecrack tIp),
that the error in a increases as the crack tip is approached. The error is about 20%
in those elements nearest the crack tip but is less than 15% for rla > 10- . As
discussed in subsection (b) above, similar behaviour regarding the accuracy of U can
be expected from the elastic-pl3tic finite element solution. As a result, we can bereasonably confident that the difference between U and U at points for which X
< 0.8 can not be caused solelu I inaccurac, in the numMical solution. The HRRsolution provides an accurate r e~ entat Ion of-the near tip stress field over the range
./a< p where r Is u .nnown. o/ever, from Fig. 9 we can easily determine an upper
ttoundan b using the criterion that the HRR solution can be considered to represent
.-thme stressel only at points for which X > 0.8.

By comparing the X curves for f equal to 0.07, 0.22, and 0.3 in Fig. 9, it can be
seen that p rncreases in magnitude as the applied load is Increased. However, these
curves shdw that the HRR solution represents the stress field only over a very small
portloi of the plastic zone. For example, at f= 0.3 the elastic-plastic boundary alongthe 349 rag Is at r/a a 0.15 but the HRF solution is certainly not valid beyond r/a 

As the load is Increased above 0.45 the numerical solution for the stress field

at the crack tip begins to differ increasinglu from the HRR solution. For example,
consider the curve corresponding tof = 0.6. This is expected because the plastic zone
has extended to the ede of the plate (see Fig. 5)sj that It can no loner be regarded
as embedded in an elastic field governed by tMe 1/1/r term. Therefore, the small-scale
yielding conditions assumed for the HRR solution are no longer true at these higher
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-applied loads. From our numerical results we conclude, for this particular crack
problem, that the HRR solution does not represent the stress field were in the
vicinitu of the crack tip when the applied load f exceeds about .0.5.11 a be seen
from tie curve fcr f = 0.6 that the stress field displays the I/r sin laitg over
the range r/a < I0"z but its amplitude is no longer determined b K in Eq.(3. 2).

Similar behaviour Is exhibited bu the elastc-plastic solution for the high hardening
material (ET = 18.51 G Pa). For Nis material it is found that the range over whic
the HRR solution represents the crack tip stress field is slightlu larger In size than
that found for the low hardening material at the same applied load.

(e) Validity of the small strain and small rotation assumptions.

a The v componentsof strain are shown in Figure Q for the low- hardening material
at an applied lad of 0.3. The strains along the 49P ra are greater than 0.1 over
the range r/a <10 -3. It is clear that the assum tion of small strains is violated in
the region near the crack tip. The rotations of the elements in this region are also
large.

A formulation which accounts for large strains and large rot tion would be a
more appropriate model. However, in our discussion (subsectIon (b)) on the effect of
the different meshes, it was shown that changes in the solution over the region near
the crack tip do not produce significant changes in the region awa from the crack tip.
The large-strains are limited to a very small region at the crack tip. It might then be
expecte that a large strain formulation would not significantly alter the solution over
much of the remainder of the plate.

The same conclusions cannot be drawn at higher levels of applied load, e.g. f= 0.5
or greater, for which the plastic zone has reached the outer edge of the plate. A
these loads the region of large strains has increased in size (for example, r/a < 101
at f= 0.6) to the extent that a large strain solution would be expected to differ from
the small strain solution over much of the plate.

4. COMPUTING TIME AND VECTORIZATION.

In our finite element analUsis, the use of a large number of degrees of freedom,
many small load steps, and a 1 i t converigence citerion is feasibre because of the
spedd of the CRAY-I computer. Por example, a t ical load step involves the solution
of 1300 linear equations and requires about 0 iterations for convergence; the
computations for such a step take onlg 1.2 c. p. u. seconds.

For both the low and the high hardening materials the size of the load incremtnts
when usi mesh A ranged from f: 10 "- at lower applied loads up to Af- 10 -. at
NW n loads. The tolerance used In the convergence criterion (2.23) was set at TOL=

IT 1 and was held fixed for each load step. A this tolerance the solution for u .e,

a- and nodal forces F converged to 3 places of decimals.

Information about the computations performe usin different meshes for both the
low and high hardening materials is displayed in Table 2. Fo the same mes, th total
c. p. u. time for the low-hardening material is about twice that required for the
high-hardening material. For a particular material, the number of iterations required
per step is Independent of the choice of mesh and is governed only by the amount of
nonlinearltg present in the problem, Ie. on the extent of the plastic zone at the
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current applied load. A comparison of the c.p.u. times for the high hardening material
using meshes C and D shows that the computational cost Is Incfeased by a factorof
abct 10 when the density of elements over the entire plate is increased by a factor or
4.

An important feature of the CRAY-1 is its vector hardware which enables the
machine to execute computational processes, In which the same arithmetic operation
is performed on each element or pair of elements from an ordered set. by
vectorization'. Vectorized computations are performed at a significant increase in

speed compared to the more conventional scalar" mode in which computations are
performed sequentially. Guidelines for writing FORTRAN programs which make
efficient use of vectorization can be found in Refs. [24-261.

In an experiment, vectorization was temporarily turned off for a run using mesh A
so that vector and scalar speeds could be compared for our code. The computations
involved in Eqs. (2. 15), (2. 16), (2. 17), and (2. 22) were carried out by vectorlzatlon
at speeds which were 3, 5, 7, and 10 times greater, respectively, than those attained
in scalar mode. Assembly of the global stifffness matrix and load column matrix is an
irerently scalar process, the small amount of vectorization which could be achieved
resulted in speeds which were only 1.5 times faster than scalar mode.

It is common.[?,31, when using a modified Newton-Raphson sctteme, to obtain an
initial gu¢.s Au for the change in displacement during the M L step by solving
for Au ,, frotd

K"Au M(l) = AFM  (4. 1)

However, in our alqorithm, the Initial guess Au (1) is given by the displacement
increment Au Trom the previous step (see Eq.2. 18). We found that this simple
change subst 11till reduced the number of iterations required for convergence In each
step. As a result te total c. p. u. time was reduced by a factor of about 2.

In the modified Newton-Raphson iterative scheme which we have discussed in
Section 2. the stiffness matrix K is updated (using the current state of stress) at the
beoining of each load step. An alternative is oniU to update K periodically and to
retain the same factored form (Rt R Cholesky algoriuhm) for a number of load steps.
For this problem, we experimented with a periodic updating strategy based on the rate
of convergence of the Iterative process. However, we found that this strategy was
difficult olmplement successfully in our program. For example, our best attempts
reduced the total computing time by at most 20% whnereas for other meshes the same
strategy actually increased the computing time. It was decided to retain the.more
simple algorithm (see Section 2) in whicni K is updated at the be inning of each load
step (the computing times shown in Table 2 are for that algorithm?

For both materials 60% of the total computing time was involved in equation
solving. In our program. the banded sgstem of linear equations is solved by vectorized
versions of the LWACK routines SPBCO and SPOFA, available through the CRAY
SSCILIB library.

5. CONCLUSIONS.

An elastic-plastic finite element method which uses only constant strain
triangular elements has been developed for a problem which exlibits a stress
singularity. The method yields a complete solution for stress, strain, and
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displacement which is accurate even at points which are very close to the singularity.
The method does not require any spii knowledge of the form of the singularit.
The load Is applied In a series of small Increments. The size of each Increment

- determined bd the load at which the next element (out of all those that are currentlyelastic) is predicted to reach yield. The nonlinear material behavior is accounted for
by a modified Newton-Raphson Iterative process which ensures that the equilibrium
equations are satisfied at the end of each load Increment. The solution for the

r. particular problem of a centrally cracked plate under tensile loading in a state of
plane-stress has been presented.

The finite element solution was obtained by using a mesh in which the size of the
elements decreases in a geometric series as Me crack tip is approached (see Sec. 2).
In section 4, it was shown that the effect of different element arrangements on the
elastic-plastic solution is similar to that observed for the purely elastic Solution
(Ref.[l]). Features are included in the finite element algorithm which significantly
reduce the total c.p.u. time. In addition, the finite element code was written to take
advantage of the vectorizing capabilities of the CRAY-i computer. thereby
substantially decreasinl the computational cost. A mesh was chosen, for our
particular problem, which provided the. best balance between accuracy and
computational cost.

Confidence in the accuracy of the solution was gained from a comparison with the
analtic HRR (Hutchinson-Rice-Rosengren) [10,11, and 121 solution in the neighborhood
of tMe crack tip under conditions of small-scale .ieldig. It was shown that the HRR
solution represents the behavior of the crack tip stress-strain field provided the
applied average stress does not exceed about one half of the yield stress. Lder
conditions of small-scale yielding, the HRR solution characterized the stress-strain
field in the vicinity of the crack tip only over a very small portion of the plastic zone
located at the crack tip.

The method presented here could easily be extended to materials which obey a
piecewise linear stress-strain law. Yield conditions other than Von Mises could also
De considered. Other fracture problems such as edge cracks, non-uniform loading,shear loading, cracks in bending, etc. could all be trivially handled by changing Me
boundary conditions. For these problems, the influence of geometry and boundary
conditions on the HRR solution could be studied. This has applications in determining
minimum size requirements for specimens used to establish a "one parameter" fracture
criterion based on the J-integral. The method could be modified to deal with cracks in
inomogeneous and/or anisotropic materials such as composites.

The method could also be extended, admittedly not without some effort, to study
the state of stress at the tip of a growing crack for which the form of the singularity
is not well understood in most materials. In a broader context, problems involving
other forms of singularity such as point loads and reentrant corners could also be
considered.

In this paper, the emphasis has been on showing that a finite element method which
uses only constant strain elements can provide a complete elastic-p lastic solution for
a state of plane-stress even in the region of hiph stress gradient close to the
singJlarity. However for real plates the state of s ress in the vicinity of the crack
tip is fully three dimensional. The plane-stress solution can be expected to hold only
at distances from the crack tip which exceed the plate thickness. This means, for th§
particular geometry which we have 'considered, that the solution can have physical
meaning only over a range of about r/a >0.05. As discussed in Section 3(b), accurate

.. A . ..--
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solutions can be obtained over this range using a coarse mesh (about 600 elements) in
relatively small c. p. u. times. It has been Shown (Sec. 3(e)) that large strains and
rotations are predicted in a neighborhood surrounding the crack tip, the size or which
n iroreases me applled stress is increased. The assumption or small strains over the

range r/a > 0.05 holds only when the applied stress is less than half the yield stress.

This suggests that a three dimensional finite element analysis with a formulation
to acca nt for large strains and rotations Is required to obtain a better understandingof the fracture process in the region close to the crack tip. The nonlinear finite
element algorithm and mesh idea! introduced here could be extended to the three
dimensionar problem using constant strain tetrahedral elements. The increased speed
and memory capacitu of the more recent models of the CRAY supercomputer make it
reasonable to expect that a full three dimensional elastic-plastic solution can be
achieved for this problem.
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number number

mesh M N of of d o. f. r

elements noe

A 49 3 1260 6a94 1319 1.0 x 106a

B 33 3 876 486 91g 1.0 x10-4a

C 19 3 564 304 569 I5.56xI0 3a

D 34 6 '2064 10,98 22161x0a

Table 11. 1. Mesh parameters.
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m no. of total average total average

E1  e iterations per no. of no. of c. p. u. c. p. u.

(G Pa) s load step at load elements time time d.o.f.

h applied load f steps yielded (secs.) per step

mo- -,-

-o-° --

.-- 0.07 0.310.5 0.g per step (secs.)

,-. 2.372 A 16 31 37 149 608 2.0 740 1.217 13191

""2.372 B 18 32 35'151 425 2.0 416B 0.979 919

18.510 A 10 14 17 19 510 2.4 338 0.553 1319
18.510 B 10 14 17 19 353 2.4 178 0.504 919

18.510 C 9 15 15 18 221 2.3 55 0.299 559

18.510 D 9 16 1 6 20 373 5.0 709 1.901 2122

Table II. 2. Computing times for both materials using different
meshes (each program run is for a maximum applied load
of f-0.98).
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Figure II. 7. Equivalent stress field at an applied load of f- 0.3.
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